





Operating manual Conductivity measuring device with data logger

as of version 1.3

# **GMH 3451**





- Please carefully read these instructions before use!
- Please consider the safety instructions!
- Please keep for future reference!



WEEE-Reg.-Nr. DE 93889386



### **GHM GROUP - Greisinger**

GHM Messtechnik GmbH | Hans-Sachs-Str. 26 | 93128 Regenstauf | GERMANY Tel.: +49 9402 9383-0 | info@greisinger.de | www.greisinger.de

3.1

3.2

4.1 4.2

4.3

4.4

6.1

6.2

6.3 6.4

6.5 6.6

6.7

8.1

9.2

12.1 12.2

10

11 12

13

14

15

16 17

18

17.1 17.2

6.6.1

6.6.2

6.7.1

6.7.2

| Inde | ex                       |   |
|------|--------------------------|---|
| 1 GI | ENERAL NOTE              | 3 |
|      | AFETY                    |   |
| 2.1  | Intended Use             | 3 |
| 2.2  | SAFETY SIGNS AND SYMBOLS | 3 |
| 2.3  | SAFETY GUIDELINES        | 3 |
| 3 PF | RODUCT SPECIFICATION     | 4 |

SCOPE OF SUPPLY ......4

CONNECTIONS 5

Pop-up clip .......6 START OPERATION......6 PRINCIPLES OF THE MEASUREMENTS......7

UNIVERSAL OUTPUT......13 

ADJUSTMENT OF TEMPERATURE INPUT ......14

AUTOMATIC ADJUSTMENT/CALIBRATION OF CELL CORRECTION ......15

REAL TIME CLOCK ("CLOC")......16

ACCURACY CHECK / ADJUSTMENT SERVICE ......16

ERROR AND SYSTEM MESSAGES .......17

ALARM ("AL.").......16

CONFIGURATION ......9 DATA LOGGER .......11

Temperature compensation "nLF" according to EN 27888 ......8

Linear temperature compensation and determination of temperature coefficient "t.Lin"......8

### 1 General Note

Read this document carefully and get used to the operation of the device before you use it. Keep this document within easy reach near the device for consulting in case of doubt.

### 2 Safety

#### 2.1 Intended Use

The device is designed for measuring conductivity, resistivity, salinity and TDS in fluids – using a permanently connected electrode (measuring cell).

It is designed for the mobile use or the stationary operation in a controlled electromagnetic environment (lab).

Personnel which starts up, operates and maintains the device has to have sufficient knowledge of the measuring procedure and the meaning of the resulting measured values, this manual delivers a valuable help for this. The instructions of the manual have to be understood, regarded and followed.

To be sure that there's no risk arising due to misinterpretation of measured values, the operator must have further knowledge in case of doubt - the user is liable for any harm/damage resulting from misinterpretation due to insufficient knowledge.

The manufacturer will assume no liability or warranty in case of usage for other purpose than the intended one, ignoring this manual, operating by unqualified staff as well as unauthorized modifications to the device.

### 2.2 Safety signs and symbols

Warnings are labelled in this document with the followings signs:



**Caution!** This symbol warns of imminent danger, death, serious injuries and significant damage to property at non-observance.



**Attention!** This symbol warns of possible dangers or dangerous situations which can provoke damage to the device or environment at non-observance.



**Note!** This symbol point out processes which can indirectly influence operation, possibly cause incorrect measurement or provoke unforeseen reactions at non-observance.

### 2.3 Safety guidelines

This device has been designed and tested in accordance with the safety regulations for electronic devices. However, its trouble-free operation and reliability cannot be guaranteed unless the standard safety measures and special safety advises given in this manual will be adhered to when using the device.

- Trouble-free operation and reliability of the device can only be guaranteed if the device is not subjected
  to any other climatic conditions than those stated under "Specification".
   If the device is transported from a cold to a warm environment condensation may cause in a failure of
  the function. In such a case make sure the device temperature has adjusted to the ambient temperature
  before trying a new start-up.
- 2. DANGER

If there is a risk whatsoever involved in running it, the device has to be switched off immediately and to be marked accordingly to avoid re-starting. Operator safety may be a risk if:

- there is visible damage to the device
- the device is not working as specified
- the device has been stored under unsuitable conditions for a longer time. In case of doubt, please return device to manufacturer for repair or maintenance.

3. When connecting the device to other devices the connection has to be designed most thoroughly as internal connections in third-party devices (e.g. connection GND with protective earth) may lead to undesired voltage potentials that can lead to malfunctions or destroying of this device and the connected devices.



This device must not be run with a defective or damaged power supply unit. Danger to life due to electrical shock!

4. DANGER

Do not use these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury or material damage. Failure to comply with these instructions could result in death or serious injury and material damage

5. DANGER

This device must not be used at potentially explosive areas!

The usage of this device at potentially explosive areas increases danger of deflagration, explosion or fire due to sparking.

6. DANGER

This device is not constructed for use in medical applications.

7. ATTENTION

The analog output is designed to output the current measured value and may only be used in a non-process-relevant manner in applications where no personal or material damage can occur.

### 3 Product Specification

### 3.1 Scope of supply

The scope of supply includes:

- GMH 3451, incl. 9V-battery
- Operating manual

### 3.2 Operation and maintenance advice

1. Battery operation:

If  $\triangle$  and 'bAt' is shown in the lower display the battery has been used up and needs to be replaced. However, the device will operate correctly for a certain time. If 'bAt' is shown in the upper display the voltage is too low to operate the device; the battery has been completely used up.



The battery has to be taken out, when storing device above 50°C. We recommend taking out battery if device is not used for a longer period of time.

After recommissioning the real-time clock has to be set again.

- 2. Treat device and sensor carefully. Use only in accordance with above specification. (do not throw, hit against etc.). Protect plug and socket from soiling.
- 3. Mains operation with power supply:



When using a power supply please note that operating voltage has to be 10.5 to 12 V DC. Do not apply overvoltage!! Cheap 12V-power supplies often have excessive no-load voltage. We, therefore, recommend using regulated voltage power supplies.

Prior to connecting the power supply to the mains make sure that the operating voltage stated at the power supply is identical to the mains voltage.

The external supply must not have a galvanic connection to the measurement medium, as this can influence the measurement and thus lead to measurement errors.

Trouble-free operation is guaranteed by our power supply GNG10/3000.

### 4 Handling

### 4.1 Display elements



Main display: conductivity (mS/cm, μS/cm)

resistivity (kΩcm)

TDS / total dissolved solids (mg/l)

salinity (SAL)

2 **Secondary display**: measuring value temperature

3 Arrows to selected measuring unit

4 Warning signal: indicates low battery or missing

calibration

5 Display elements to show minimum / maximum /

memorized measuring value

6 **nLF**, **Lin**: display element for selected

temperature compensation

7 %/K, 1/cm: additional configuration units

logg-arrow: logger is ready

8 arrow flashing: automatic recording (Logg CYCL) is

active

### 4.2 Pushbuttons



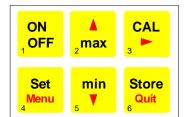
1

On / Off key

press shortly: switch on/off instrument



max


+

Set / Menu:

press shortly: change-over between measuring units

(only if "InP: SEt" is selected)

press for 2 sec. (menu): invoke configuration menu



#### min/max when taking measurements:

press shortly: min. or max. value is displayed press for 2 sec: the corresponding value is deleted

**Configuration**:

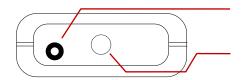
to enter values or change settings



**CAL**: only at mode 'cond'=conductivity:

Criz. only at mode conditionally.

press for 2 sec: start cell correction adjustment


#### Store/Quit:

Store Quit Logger off: hold and save current measuring value

('HLD' is displayed)

Logger on: Operation of data logger – chapter 8 Set/Menu: confirm settings, return to measuring

#### 4.3 Connections



**Universal output:** interface, analog output (see chapter 9 "Universal output")

Permanently connected measuring cell with integrated temperature probe

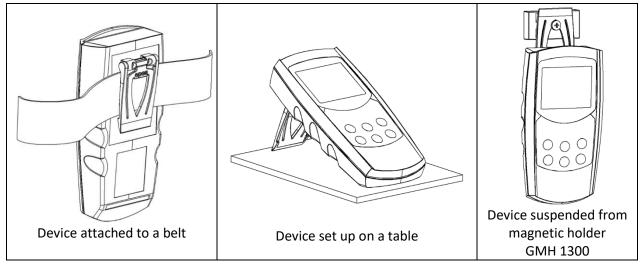
Power supply:

The mains socket (1.9 mm inner diameter) is located at the left side of the instrument for 10.5-12 V DC supply



All contacts have to be protected against dirt and moisture!

### 4.4 Pop-up clip


#### Handling:

- Pull at label "open" in order to swing open the pop-up clip.
- Pull at label "open" again to swing open the pop-up clip further.



#### Function:

- The device with a closed pop-up clip can be plainly laid onto a table or attached to a belt, etc.
- The device with pop-up clip at position 90° can be set up on a table, etc.
- The device with pop-up clip at position 180° can be suspended from a screw or the magnetic holder GMH 1300.



# **Start Operation**

Turn device on via



After segment test the device displays some information on its configuration:

5[L if cell correction scale was changed (cell correction scale unequal 1.000) (see chapter 11 Automatic adjustment/calibration of cell correction)

Larr if zero point or slope correction is active (see chapter 10 Adjustment of temperature input)

After that the device is ready for measuring.

### 6 Principles of the measurements

### 6.1 Basics about conductivity

Definition of conductivity $\gamma$ : The ability of a material to conduct electric current:  $\gamma = \frac{1}{R \cdot A}$ 

l: length of the material

A: diameter

R: measured resistance

Unit 
$$[\gamma] = \frac{Siemens}{meter} = \frac{S}{m},$$
 common for liquids:  $\frac{mS}{cm}$  and  $\frac{\mu S}{cm}$ 

The conductivity is the reciprocal value of the resistivity.

(The conductance is the reciprocal value of the measured resistance R)

### 6.2 Conductivity measurement

The conductivity measurement is a rather uncomplicated measurement. The standard electrodes are stable for a long time if used correctly and can be adjusted by an integrated Cal-function.

Measuring ranges: 0.0 - 200.0 μS/cm | 0 - 2000 μS/cm | 0.00 - 20.0 mS/cm | 0.0 - 200.0 mS/cm | 0 - 400 mS/cm

If the range selection is set to "**Auto Range**", the range with the best resolution is automatically selected. In this case, the output value of the interface will always be the measured value with the highest possible resolution (e.g. display value: 187.6 mS/cm  $\Rightarrow$  interface output: 187600.0  $\mu$ S/cm).

### 6.3 Resistivity measurement

The resistivity is the reciprocal value of the conductivity and the device displays it in kOhm•cm.

Measuring ranges: 0.000 - 2.000 kOhm\*cm | 0.00 - 20.00 kOhm\*cm | 0.0 - 100.0 kOhm\*cm

If the range selection is set to "Auto Range", the range with the best resolution is automatically selected. However, logger or interface operation requires a manual/fixed selection of the measuring range from the table above (No logger/interface operation with Auto-range!).

#### 6.4 TDS measurement

At the TDS (<u>t</u>otal <u>d</u>issolved <u>s</u>olids) measurement the filtrate dry residue is determined by means of the conductivity and a conversion factor (C.tdS). Well suited for easy concentration measurements of e.g. salt solutions. The determined value is displayed in mg/l.

Measuring ranges: 0.0 - 200.0 mg/l 0 - 2000 mg/l

If the range selection is set to "**Auto Range**", the range with the best resolution is automatically selected. In this case, the output value of the interface will always be the measured value with the highest possible resolution (e.g. display value:  $1876 \text{ mg/l} \Rightarrow \text{interface output: } 1876.0 \text{ mg/l}$ ).

Displayed value TDS = conductivity [in µs/cm, nLF-temp. comp. at 25°C] • C.tdS (input at menu)

Approximately:

| C.tdS       |                                                         |
|-------------|---------------------------------------------------------|
| 0.50        | Monovalent salts with 2 ion types (NaCl, KCl, etc.)     |
| 0.50        | Natural waters / surface waters, drinking water         |
| 0.65 - 0.70 | e.g. salt concentration of aqueous fertilizer solutions |

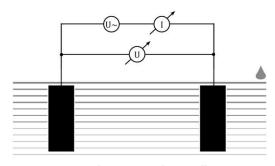
Attention: This are only approximate values – good for estimations, but no precise measurement. For precise measurements the conversion value has to be determined for the corresponding solution for the relevant concentration range.

This may be done by comparison with known reference solutions or by actually evaporating a certain amount of solution with determined conductivity and subsequent weighing of the dry residue.

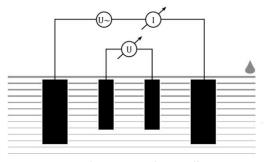
### 6.5 Salinity measurement

At the salinity measurement "SAL" the salinity (salt content) of seawater is determined (based on: International Oceanographic Tables; IOT). Standard seawater has a salinity of 35 % (35 g salt per 1 kg seawater). Commonly the measured value is displayed dimensionless in % (g/kg).

Additionally the term "PSU" (Practical Salinity Unit) is sometimes used, the displayed value is the same. The salinity measurement has its "own" temperature compensation, i.e. the temperature is automatically taken into account for the salinity measurement. The menu settings regarding the temperature compensation are ignored.




The salt composition of the different seas is not the identical. Depending on place, weather, tides, etc. there may be considerable divergences to the 35 % according to IOT. Additionally the salt composition may influence the ratio between salinity and actual salt content.


### 6.6 Electrodes / measuring cells

#### 6.6.1 Design

Basically there are two types of measuring cells: 2-pole and 4-pole cells. The operation is done similarly; the 4-pole measuring cells can compensate polarization effects and – up to some degree – soiling due to its complex measuring method.



2-pole measuring cell



4-pole measuring cell

#### 6.6.2 Calibration / Adjustment of measuring cells



Especially in harsh environments and over long time the cell constants of measuring cells are drifting. Depending on the application and use we recommend a regular checking of the precision of the measuring chain: instrument + cell.

For this there are control solutions available (GKL 100, 101, 102). At normal use a checking each half year is recommended (see chapter 11 Automatic adjustment/calibration of cell correction). A system check at the manufacturer is recommended in case of doubt: see chapter 15 Accuracy Check / Adjustment Service).

### 6.7 Temperature compensation

The conductivity of aqueous solutions depends on its temperature. The temperature dependency is strongly dependent on the type of solution. The temperature compensation recalculates solutions' conductivity to a consistent reference temperature. The most common reference temperature is 25 °C.

#### 6.7.1 Temperature compensation "nLF" according to EN 27888

For most applications (e.g. in the area of fish farming, surface or drinking water measurements, etc.) the non-linear temperature compensation for natural water ("nLF", according to EN 27888) is sufficiently accurate. The common reference temperature is 25 °C.

Recommended application range of nLF-compensation: between 60 µS/cm and 1000 µS/cm.

#### 6.7.2 Linear temperature compensation and determination of temperature coefficient "t.Lin"

If the actual function needed for exact temperature compensation is not known, "linear temperature compensation" is normally selected (Menu, t.Cor = Lin, t.Lin corresponds  $TK_{lin}$ ), i.e. one assumes that the actual temperature dependency at the considered concentration range is approximately equal:

$$LF_{Tref} = \frac{LF_{Tx}}{1 + \frac{TK_{lin}}{100\%} \bullet (Tx - Tref)}$$

Temperature coefficient of about 2.0 %/K are most common.

A temperature coefficient can be determined for example by measuring a solution with deactivated temperature compensation at two different temperatures (T1 and T2).

$$TK_{lin} = \frac{(LF_{T1} - LF_{T2}) \cdot 100\%}{(T1 - T2) \cdot LF_{T1}}$$

TK<sub>lin</sub> is the value input at the menu "t.Lin".

LF<sub>T1</sub> conductivity at temperature T1

LF<sub>T2</sub> conductivity at temperature T2

### **Configuration**



Some menu points depend on current device settings (e.g. some points are locked if logger memory contains data sets).

To change device's settings, press "Menu" for 2 seconds. This will activate the configuration menu (main display: "SEt"). Pressing "Menu" changes between the menus points, pressing jumps to the referring parameters, which can be selected with key.



Pressing "menu" and "store" at the same time for more than 2 seconds will reset the device to factory defaults.

If there are data sets stored and logger is set to "manual recording" ("Func Stor") the first menu point displayed is "rEAd Logg" (see chapter "8 Data Logger")

If no key is pressed for more than 2 minutes the configuration will be aborted. All changes will be discarded.

| be discarded! |                             |                  |                                                                   |    |  |
|---------------|-----------------------------|------------------|-------------------------------------------------------------------|----|--|
| Menu          | Parameter Value Description |                  |                                                                   |    |  |
| Set<br>Menu   | CAL                         | or smin          |                                                                   |    |  |
| rERd          | rEAd Log                    | g: Read manu     | al recordings,                                                    |    |  |
| L088          | see chapt                   | er 8.1 Manual    | recording ("Func-Stor")                                           |    |  |
|               | Set Config                  | guration: Gen    | eral configuration                                                |    |  |
| SEŁ           |                             | Input: Selection | on of measured variable                                           | ** |  |
| Conf          |                             | Cond             | Conductivity                                                      |    |  |
|               | 1 _ 0                       | rESi             | Resistivity                                                       |    |  |
|               | ווחר                        | tdS              | Total dissolved solids                                            |    |  |
|               |                             | SAL              | Salinity                                                          |    |  |
|               |                             | SEt              | Change-over measured variables by Set-key                         |    |  |
|               | F1 1F                       | TDS measure      | ment: conversion factor (only if Inp = tdS)                       |    |  |
|               | [.Ł d 5                     | 0.40 - 1.00      | Conversion factor for TDS measurement                             |    |  |
|               | TELL.                       | Cell Corr: Adj   | ustment of cell correction: multiplication factor                 |    |  |
|               |                             | 0.800 -          | Multiplication factor of cell correction                          |    |  |
|               | Corr                        | 1.200            | Factory setting: 1.000                                            |    |  |
|               |                             | Range: Select    | tion of display range (conductivity, resistivity or tdS)          |    |  |
|               |                             | Auto             | Automatic range selection                                         |    |  |
|               | r An 6                      | 200.0 μS/cm      | Lowest selectable range (conductivity)                            |    |  |
|               | · · · · · · ·               |                  | ļ                                                                 |    |  |
|               |                             | 400 mS/cm        | Highest selectable range (conductivity)                           |    |  |
|               |                             | Automatic ad     | justment/calibration with reference solution (only if Inp = Cond) |    |  |
|               |                             | Edit             | Manual adjustment to reference value                              |    |  |
|               |                             | REF.S            | Choice of standard reference solutions                            |    |  |
|               |                             | REF.S: Choice    | e of standard reference solutions for automatic adjustment/cal.   |    |  |
|               |                             | 1413 µS/cm       | Reference solution 0.01 M KCL                                     |    |  |
|               |                             | 2760 µS/cm       | 0.02 M KCL                                                        |    |  |
|               | r E F.5                     | 12.88 mS/cm      | 0.1 M KCL                                                         |    |  |
|               |                             | 50 mS/cm         | Sea-water reference solution KCL                                  |    |  |
|               |                             | 111.8 mS/cm      | 1 M KCL                                                           |    |  |
|               | Unrt                        | Unit t: Selecti  | on of temperature unit                                            |    |  |
|               |                             | °C               | All temperature values in degree Celsius                          |    |  |
|               | Ł                           | °F               | All temperature values in degree Fahrenheit                       |    |  |
|               |                             | Temperature      | compensation (not for InP = SAL)                                  |    |  |
|               | _ ا                         | oFF              | No temperature compensation of conductivity measurement           |    |  |
|               | Ł.Cor                       | nLF              | Non-linear function for natural waters according to EN 27888      |    |  |
|               | L.L U /                     |                  | (ISO 7888), ground, surface and drinking water                    |    |  |
|               |                             | Lin              | Linear temperature compensation                                   |    |  |
|               | LI _                        | Compensatio      | n coefficient (only if t.Cor = Lin)                               |    |  |
|               | L.L.n                       | 0.300 3.000      | Temperature compensation coefficient in %/K                       |    |  |

| _ <del></del> _                                 |                  |                          | Operating Manual GMH 3431 page                                                                                                          |    |             |
|-------------------------------------------------|------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----|-------------|
| Menu                                            | Parameter        | Value                    | Description                                                                                                                             |    |             |
| Set<br>Menu<br>4                                | CAL              | 2max Or 5                |                                                                                                                                         |    |             |
| C C )                                           |                  |                          | perature of temperature compensation (only if t.Cor = Lin or nLF)                                                                       |    |             |
| SEŁ<br>Conf                                     | Ł.r              | 25 °C / 77 °F            | Reference temperature 25 °C / 77 °F                                                                                                     |    |             |
| [anF                                            |                  | 20 °C / 68 °F            | Reference temperature 20 °C / 68 °F                                                                                                     |    |             |
|                                                 | <b>-</b>         |                          | alibration: Adjustment reminder period (factory setting: oFF)                                                                           |    |             |
|                                                 | [.i nt           | 1730                     | Adjustment reminder period (in days)                                                                                                    |    |             |
|                                                 | <b>_</b> ., ,, _ | oFF                      | No adjustment reminder                                                                                                                  |    |             |
|                                                 |                  | Auto Hold: Au            | tomatic measuring value identification (only if Logger = oFF)                                                                           |    |             |
|                                                 | Ruto             | on                       | Auto measuring value identification (only if Logger = oFF) Auto Hold                                                                    |    |             |
|                                                 |                  | oFF                      | Standard hold function on key press (only if Logger = oFF)                                                                              |    | <u> </u>    |
|                                                 |                  |                          | ff : Selection of power-off delay                                                                                                       |    |             |
|                                                 | 0-66             | 1120                     | Power-off delay in minutes.                                                                                                             |    | 1           |
|                                                 | P.oFF            |                          | Device will be automatically switched off as soon as this time has elapsed if no key is pressed/no interface communication takes place. |    | 1           |
|                                                 |                  | oFF                      |                                                                                                                                         |    | 1           |
|                                                 | Set Outpu        |                          | Automatic power-off function deactivated (continuous operation) on of universal output                                                  |    |             |
| SFL                                             | Set Outpu        | oFF                      | Interface and analogue output off -> minimal power consumption                                                                          |    |             |
| SEŁ<br>OUŁ                                      | Out              | SEr:                     | Serial interface activated                                                                                                              |    |             |
| JUL                                             |                  | dAC:                     | Analogue output activated                                                                                                               |    |             |
|                                                 | П                | 01,1191                  | Base address for serial interface communication                                                                                         |    |             |
|                                                 | Rdr.             |                          |                                                                                                                                         |    |             |
|                                                 | 48L U            | 0.0 μS/cm<br>400 mS/cm   | Measuring value that should correspond to output 0 V                                                                                    |    |             |
|                                                 | U11 L.U          |                          | e.g. for 0.0 µS/cm                                                                                                                      |    |             |
|                                                 | dKL. I           | 0.0 μS/cm<br>400 mS/cm   | Measuring value that should correspond to output 1 V e.g. for 100.0 mS/cm                                                               |    |             |
| c c .                                           | Set Corr: I      | Measurement              | correction                                                                                                                              | ** |             |
| SEŁ                                             | 0555             | Zero point adj           | ustment / offset of temperature measurement                                                                                             | ** |             |
| [orr                                            | OFF5             | oFF                      | No zero point adjustment for temperature measurement                                                                                    |    |             |
|                                                 | 0,,,,            | -5.0 5.0°C               | Offset of temperature measurement in °C                                                                                                 |    |             |
|                                                 | CCOL             |                          | ent of temperature measurement                                                                                                          | ** |             |
|                                                 | SERL             | oFF                      | No slope adjustment for temperature measurement                                                                                         |    |             |
|                                                 |                  | -5.00 5.00               | Slope correction of temperature measurement in [%]                                                                                      |    |             |
| CCL                                             | Set Alarm        |                          | n of alarm function                                                                                                                     |    |             |
| SEŁ<br>AL.                                      | On / No.S        |                          | Measuring channel cond/ rES /TDS/ SAL: alarm on with buzzer / without buzzer                                                            |    |             |
| NL.                                             | KL. i            | OFF                      | No alarm function for measuring channel cond/ rES/ TDS/ SAL                                                                             |    |             |
|                                                 | 0.11             | 0.0 μS/cm                | Min-alarm limit for cond/ rES/ TDS/ SAL (not if AL. 1. oFF)                                                                             |    |             |
|                                                 | X. i.L o         | 400 mS/cm                | Will-diam limit for cond/ 123/ 123/ 3AE (not il AE. 1. 011)                                                                             |    |             |
|                                                 | RIKI             | 0.0 μS/cm<br>400 mS/cm   | Max-alarm limit for cond/ rES/ TDS/ SAL (not if AL. 1. oFF)                                                                             |    |             |
|                                                 | 01 3             | On / No.So               | Temperature measurement: alarm on with buzzer / without buzzer                                                                          |    |             |
|                                                 | <u>ΠL.</u> [     | OFF                      | No alarm function for temperature measurement                                                                                           |    |             |
|                                                 | R.2.L o          | -5.0+100.0 °C            | Min-alarm limit for temperature (not if AL. 2. oFF)                                                                                     |    |             |
|                                                 | R2Ki             | -5.0+100.0 °C            | Max-alarm limit for limit temperature (not if AL. 2. oFF)                                                                               |    |             |
|                                                 | Set Logge        | r: Configuration         | on of logger function                                                                                                                   | ** |             |
| SEŁ                                             |                  | Selection of lo          |                                                                                                                                         | *  |             |
| L 0 5 5                                         | <u> </u>         | oFF                      | No logger activated                                                                                                                     |    |             |
|                                                 | tunc             | Stor                     | Store: Manual recording                                                                                                                 |    |             |
|                                                 | C11C1            | CYCL<br>0:01 60:00       | Cyclic: Cyclic logger  Cycle time in [misutes seemed   (for eyelic logger)]                                                             | ** |             |
|                                                 | 1 41 1           | 0.01 60:00               | Cycle time in [minutes:seconds] (for cyclic logger)                                                                                     | "" | 1           |
|                                                 | Set Clock        | Setting of rea           | al time clock                                                                                                                           |    |             |
| SEŁ                                             | ri nr            | HH:MM                    | Clock: set time hours:minutes                                                                                                           |    |             |
| ַ <u>בַ</u> נַנַם בּ                            | LLÜL             |                          |                                                                                                                                         |    |             |
|                                                 | 4FRc             | YYYY                     | Year: set year                                                                                                                          |    |             |
|                                                 | 7011             | TT.MM                    | Date: set date day.month                                                                                                                |    | <del></del> |
|                                                 | dXtt             | 1 .IVIIVI                | Date. Set date day.month                                                                                                                |    |             |
| c E R d                                         |                  | : Read calibra           |                                                                                                                                         |    |             |
| see chapter 12.2 Calibration storage (rEAd CAL) |                  | ation storage (rEAd CAL) |                                                                                                                                         |    |             |
| LIIL.                                           |                  |                          |                                                                                                                                         |    |             |

- (\*) If logger memory contains data sets parameters marked with (\*) cannot be called. You have to clear memory to change these parameters!
- (\*\*) If logger is running parameters marked with (\*\*) cannot be called.

### 8 Data Logger



No logger operation possible with auto-range! The measuring range has to be selected explicitly – see chapter 7 "Configuration" - r h h h

The device supports two different logger functions:

"Func-Stor": Manual recording by key press "store"

Additional input of measuring point (L-Id) is needed

"Func-CYCL": Automatic recording at intervals of set cycle time

The logger stores 2 measuring values per data set.

One data set consists of: meas. value cond/ rES/ TDS/ SAL (one of them)

meas. value temperature

measuring point L-Id (only for "Func-Stor")

time and date (when data set is saved)

For the evaluation of the data the software GSOFT3050 (version V3.0 or higher) has to be used. The software also allows easy configuration and starting of the logger.

When the logger is activated (Func Stor or Func CYCL) the hold function is no more available, the key "store" is solely used for the operation of the logger functions.

#### 8.1 Manual recording ("Func-Stor")

#### a) Save measurements manually:

Up to 1000 measurements can be saved if logger function "Func store" is selected. (see "Configuration"):

Store Quit **Press "Store" shortly:** data set is saved ("St. XX" is displayed shortly, where XX is the number of the data set)

**Input of the measuring point** "L-Id": Selection of measuring point via keys or Number 0...19999 or text assigned to number 1...40

(comfortable assignment of texts can be done with gratis software GMHKonfig)

Confirm input with

If logger storage is full, the following is displayed: Lobb

#### b) Read manual recordings:

Saved data sets can be viewed both with PC-software GSOFT3050 and directly on the device display.



Press "menu" for 2 seconds: rend is displayed



"rEAd LoGG" is only displayed if data sets have been already stored! Otherwise the configuration menu is displayed:  $\frac{5}{5}\frac{L}{L}$ 

|               | <u>Lont</u>                                                                                                             |
|---------------|-------------------------------------------------------------------------------------------------------------------------|
| CAL           | <b>Press shortly:</b> Change between measuring values, measuring point and date+time of the currently selected data set |
|               | of the dufferity selected data set                                                                                      |
| 2max Or 5 min | Change between different data sets                                                                                      |
| Store         | Quit display of recordings                                                                                              |

#### c) Clear manual recordings:

If data sets have been stored, they can be deleted with the "store" key:

Press "store" for 2 seconds: Call menu "Clear"

Select with: 2max

or 5

LLr Clear nothing (cancel)  $\cap \circ$ 

Clear all data sets ALL

LLr Clear the latest data set LASE

Store

Confirm selection and guit menu "Clear"

### 8.2 Automatic recording with selectable cycle time "Func CYCL"

If logger function "Func CYCL" is selected (see "Configuration") the device will automatically record measuring values at intervals of the set cycle time.

The logger's cycle time can be set from 1s to 60min (see "Configuration").

Up to 10000 measurements can be saved if logger function "Func CYCL" is selected.

#### a) Start recording:

Store Press "store" for 2 seconds: Start menu, press Quit again: automatic recording is started Each storage process is signalled by shortly displaying "St.XXXX", where XXXX is the number of the saved data set.

If the logger memory is full, the recording stops automatically and the display shows

#### b) Stop recording:

Press "store" for 2 seconds: If recording is running the "stop" menu is displayed

Select with <sup>2max</sup> or <sup>5</sup>

Do not stop recording (cancel)

Stof Stop recording

Store

If recording is running the "stop" menu is displayed



If you try to switch off the device while cyclic recording is active you will be asked whether the recording should really be stopped.

The device can only be switched off if the recording is stopped. Auto-off function is deactivated as long as cyclic recording is active.

#### c) Clear recordings:

Press "store" for 2 seconds:

If there are data sets stored and recording is already stopped the menu "Clear" is displayed

Select with <sup>2max</sup> or <sup>5</sup>





LLr Do not stop recording (cancel)

r Clear all data sets

Clear latest data set LASE

Confirm selection and quit menu "Clear"

### 9 Universal output

The output can be used as serial interface (for USB 3100, USB 3100 N, GRS 3100 or GRS 3105 interface adapters) or as analogue output (0-1V).

If none of both is needed, we suggest to switch the output off, because battery life then is extended.



When operating with external supply or connected interface and measurement at solutions with earth connection, there may appear distortions or deviations of the measuring. In case of doubt disconnect supply/interface.

The same is valid for the analogue output: Depending how the output is connected (e.g. even without isolation), in case of doubt do not measure in solutions with earth contact.

#### 9.1 Serial Interface

By means of the serial interface and a suitable electrically isolated interface adapter (USB 3100, USB 3100 N, GRS 3100 or GRS 3105) the device can be connected to a computer for data transfer.

With the GRS 3105 up to 5 devices of the GMH3xxx- series can be connected to one interface (see also manual of GRS 3105). As a precondition the base addresses of all devices must not be identical, make sure to configure the base addresses accordingly (refer menu point "Adr." in chapter 1 "Configuration"). To avoid transmission errors, there are several security checks implemented e.g. CRC.

The following standard software packages are available:

GSOFT3050: Operation and read out of logger function for devices with integrated data logger

■ **GMHKonfig**: Software for a comfortable editing of the device (e.g. Material selection...)

■ EBS 20M / 60M: 20-/60-channel software to display the measuring values

In case you want to develop your own software we offer a **GMH3000-development package** including:

- A universally applicable Windows functions library ('GMH3000.DLL') with documentation that can be used by the most programming languages. Suitable for Windows XP™, Windows Vista™, Windows 7™, Windows 8 / 8.1™, Windows 10™
- Programming examples Visual Studio 2010 (C#, C++ und VB), Testpoint™,LabView™ uvm.

In addition to the operation at a PC the device can be operated with the **GAM 3000** device, to use the alarm function for simple supervision and controlling applications. Just connect a GAM 3000 to the interface, activate the alarm function of the GMH and the relays output is operating.

#### The device has 2 channels:

- Channel 1: current measuring value Cond, rES, TDS oder SAL (base address)
- Channel 2: temperature value

#### Supported functions:

| 1 | 2 | Code | Name/Function                      | 1 | 2 | Code | Name/Function                      |
|---|---|------|------------------------------------|---|---|------|------------------------------------|
| Х | Х | 0    | Read measurement value             | Х | Х | 200  | Read min display range             |
| Х | Х | 3    | Read system state                  | Х | Х | 201  | Read max display range             |
| Х |   | 12   | Read ID number                     | Х | Х | 202  | Read display range - unit          |
| Х | Х | 22   | Read min alarm rail (AL AL.Lo)     | Х | Х | 204  | Read display range - decimal point |
| Х | Х | 23   | Read max alarm rail (AL AL.Hi)     | Х |   | 208  | Read # of channels                 |
| Х | Х | 176  | Read min measuring range           | Х |   | 222  | Read power off time (Conf-P.oFF)   |
| Х | Х | 177  | Read max measuring range           | Х |   | 223  | Set power off time (Conf-P.oFF)    |
| Х | Х | 178  | Read measuring range unit          | Х |   | 233  | Read real time clock (CLOC)        |
| Х | Х | 179  | Read measuring range decimal point | Х |   | 234  | Set real time clock (CLOC)         |
| Х | Х | 180  | Read kind of measuring of sensor   | Х |   | 240  | Reset                              |
| Х | Х | 199  | Read kind of measuring of display  | Х |   | 254  | Program version                    |

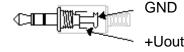


The measuring-/ alarm- and display range values read back from the interface are always in the selected measurement unit!

When using the interface, the auto-range-function should be turned off. If auto-range is activated, the returned value ar based on the resolution of the smallest ranges, there may be returned extreme values like 123400.0  $\mu$ S/cm instead 123.4 mS/cm.

### 9.2 Analogue Output




Keep in mind not to connect low-resistive loads to the output, otherwise the output value will be wrong and battery life is decreased. Loads above approx. 10kOhm are uncritical.

The signal conditioning instrument used must be galvanically isolated from the measured medium and any external supply voltage used for the measuring device.

An analogue voltage 0-1V can be tapped at the universal output socket (mode: "Out dAC"). With the DAC.0 and DAC.1 values the output can be rapidly scaled to your efforts.

If the display exceeds the value set by DAC.1, then the device will apply 1V to the output If the display falls below the value set by DAC.0, then the device will apply 0V to the output In case of an error (Err.1, Err.2, no sensor, etc.) the device will apply slightly above 1V to the output.

plug wiring:



#### Attention!

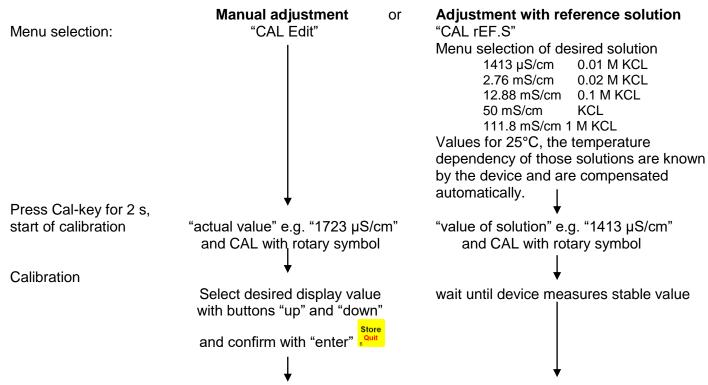
the 3<sup>rd</sup> contact has to be left floating! Only stereo plugs are allowed!

### 10 Adjustment of temperature input

The temperature input can be adjusted with offset and scale. A reasonable adjustment presumes reliable references (e.g. ice water, controlled precision water bath, etc.).

If the inputs are adjusted (i.e. offset and scale are different from default settings) the device will shortly display "Corr" after turned on.

Default setting for offset and scale are 'off' = 0.0, i.e. inputs are not changed.


Zero point correction: Displayed value = measured value - OFFS

Zero point and slope correction: Displayed value = (measured value - OFFS) \* (1 + SCAL / 100)

Displayed value  $^{\circ}F = (\text{meas. value }^{\circ}F - 32^{\circ}F - OFFS) \cdot (1 + SCAL / 100)$ 

### 11 Automatic adjustment/calibration of cell correction

Besides the direct input of the cell correction (see below) via the menu ("CELL Corr") the cell correction can also be determined automatically:



Afterwards the device returns to the normal measuring operation mode or – if so – displays an error message.

The resulting cell correction can be seen in the menu at "CELL Corr" and the calibration history.

| Error mess | Error messages of automatic adjustment/calibration: |                                                                                  |  |  |  |
|------------|-----------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|
| CAL Err.1  | Cell correction too high                            | Determined cell correction must not exceed 1.2                                   |  |  |  |
| CAL Err.2  | Cell correction too small                           | Determined cell correction must not fall below 0.8                               |  |  |  |
| CAL Err.3  | Solution of wrong range                             | Wrong solution / far beyond tolerance                                            |  |  |  |
| CAL Err.4  | Wrong temperature                                   | Beyond permitted temperature:<br>0.0 - 34.0 °C (or 0.0 - 27.0 °C at 111.8 mS/cm) |  |  |  |

Alternative to automatic adjustment:

#### Manual calculation of cell correction with a reference solution

Example KCl-solution c= 0.01 M: 1413 µS cm<sup>-1</sup> at 25°C

At other temperatures switch temperature compensation off (t.Cor = oFF) and use the referring conductivity!

Conductivity displayed = 1500 µS cm<sup>-1</sup> if selected cell correction is 1.000 cm<sup>-1</sup> (CELL Corr = 1.000)

Conductivity of solution at solution temperature 25 °C: Conductivity real = 1413 µS cm<sup>-1</sup>

Cell correction c = conductivity real / conductivity displayed [cm<sup>-1</sup>] = 1413 / 1500 \* cm<sup>-1</sup> = **0.942 cm<sup>-1</sup>** (Enter CELL Corr of 0.942)

### **12 GLP**

GLP (Good Laboratory Practice) includes regular check of devices and accessories. For pH measurements it is highly important to ensure correct pH calibration. The device provides the following functions to help with this.

### 12.1 Calibration interval (C.Int)

You can input the interval after which the device reminds you to recalibrate.

The interval times should be chosen according to the application and the stability of the electrode. "CAL" flashes on the display as soon as the interval has expired.

### 12.2 Calibration storage (rEAd CAL)

The last 16 calibrations are stored with results and date and can be read out.

#### Display calibration data:

Historical calibration data can be comfortably read out via PC software GMHKonfig and GSOFT3050 or displayed directly at the device:

| Set<br>Menu   | Press for 2 seconds:<br>The display will show: | rEAd SEE<br>Loss or Configuration level)      |
|---------------|------------------------------------------------|-----------------------------------------------|
| Set<br>Menu   | Press several times until this is displayed:   | rERd [RL] read cal. = "read calibration data" |
|               | Press shortly: switch betwee                   | n:                                            |
| CAL           | <ul> <li>CELL = cell correction</li> </ul>     |                                               |
| 3             |                                                | e, at which cell correction has been adjusted |
|               | - Display of date+time of                      | f data set                                    |
| max 2         | or Change between the different                | calibration data sets                         |
| Store<br>Quit | Quit calibration data set displa               | у                                             |

### 13 Alarm ("AL.")

There are 3 possible settings:

off (AL.oFF), on with buzzer (AL.on), on without buzzer (AL.no.So).

Alarm is given in the following cases (if alarm active, AL.on or AL.no.So):

- Lower alarm boundary (AL. Lo) under-run
- Upper alarm boundary (AL. Hi) over-rum
- Sensor error
- Low battery (bAt)
- Err.7: system error (always with buzzer!)

In case of an alarm (and when polling the interface) the 'PRIO'-flag is set in the returned interface message.



We suggest to choose a fixed unit for the display (e.g. "InP cond") when using the alarm function.

If "InP 5EE " is chosen instead, this may lead to unpredictable behaviour of the alarm.

### 14 Real Time Clock ("CLOC")

The real time clock is used for chronological assignment of the logger data and calibration points. Please check the settings when necessary.

## 15 Accuracy Check / Adjustment Service

You can send the device to the manufacturer for adjustment and inspection.

Calibration certificate - DKD certificate - official certifications:

If the measuring instrument is supposed to receive a calibration certificate, it has to be sent to the manufacturer (declare test points).

If the device is certificated together with a suitable sensor very high overall accuracies are possible.

Basic settings can only be checked and – if necessary – corrected by the manufacturer.

A calibration protocol is enclosed to the device ex works. This documents the precision reached by the production process.

# 16 Error and System Messages

| Lifoi illessages it                   |                                                                                 | 1                                                                                            |
|---------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                                       | Description                                                                     | What to do?                                                                                  |
| No display or                         | Battery empty                                                                   | Replace battery                                                                              |
| confused<br>characters,               | Mains operation: wrong voltage or polarity                                      | Check power supply, replace it if necessary                                                  |
| Device does not                       | System error                                                                    | Disconnect battery and power supply, wait shortly, then reconnect                            |
| react on key press                    | Device defective                                                                | Return to manufacturer for repair                                                            |
| Err.1                                 | Measured value above allowable range                                            | Check: pressure not within sensor range? -> measuring value to high!                         |
|                                       | Sensor defective                                                                | Return to manufacturer for repair                                                            |
| Err.2                                 | Measured value below allowable range                                            | Check: pressure not within sensor range? -> measuring value to low!                          |
|                                       | Sensor defective                                                                | Return to manufacturer for repair                                                            |
| Err.7                                 | System error                                                                    | Return to manufacturer for repair                                                            |
| <b>-</b> U.7                          | Value extremely out of measuring range                                          | Value extremely out of measuring range                                                       |
|                                       | Could not calculate display value                                               |                                                                                              |
|                                       | measuring range or input range<br>exceeded                                      | Check range parameter                                                                        |
|                                       | measured values are instable                                                    | Wait for signal regulation of the device                                                     |
| > CAL < CAL flashing in upper display | Either preset calibration interval has expired or last calibration is not valid | Device has to be calibrated!                                                                 |
| no Ruto<br>Lo66 rRn6                  | Logger could not be started                                                     | Auto range for the display range is active => change the parameter in the configuration menu |
| Error messages f                      | or automatic cell correction adjustmer                                          | nt/calibration:                                                                              |
| CAL Err.1                             | Cell correction too high                                                        | Determined cell correction must not exceed 1.2                                               |

| CAL Err.1 | Cell correction too high  | Determined cell correction must not exceed 1.2                                   |
|-----------|---------------------------|----------------------------------------------------------------------------------|
| CAL Err.2 | Cell correction too small | Determined cell correction must not fall below 0.8                               |
| CAL Err.3 | Solution of wrong range   | Wrong solution / far beyond tolerance                                            |
| CAL Err.4 | Wrong temperature         | Beyond permitted temperature:<br>0.0 - 34.0 °C (or 0.0 - 27.0 °C at 111.8 mS/cm) |

If **"bAt"** is flashing the battery will be exhausted soon. Further measurements are possible for short time. If "bAt" is displayed continuously the battery is ultimately exhausted and has to be replaced. Further measurements aren't possible any more.

### 17 Reshipment and Disposal

### 17.1 Reshipment



All devices returned to the manufacturer have to be free of any residual of measuring media and other hazardous substances. Measuring residuals at housing or sensor may be a risk for persons or environment



Use an adequate transport package for reshipment, especially for fully functional devices. Please make sure that the device is protected in the package by enough packing materials.

### 17.2 Disposal instructions



Batteries must not be disposed in the regular domestic waste but at the designated collecting points.

The device must not be disposed in the unsorted municipal waste! Send the device directly to us (sufficiently stamped), if it should be disposed. We will dispose the device appropriate and environmentally sound.

Private end users in Germany have the possibility of dropping off the device at the municipal collection centre.

Batteries must be removed beforehand!

| 18 Speci        | fication                     |                                                                                               |
|-----------------|------------------------------|-----------------------------------------------------------------------------------------------|
| Measuring       | Anzahl                       | 5                                                                                             |
| ranges          | Conductivity 1 *)            | 0.0 200.0 μS/cm                                                                               |
| ranges          | " 2 *)                       | 0 2000 μS/cm                                                                                  |
|                 | " 3*)                        | 00 20.00 mS/cm                                                                                |
|                 | " 4*)                        | 0.0 20.0 mS/cm                                                                                |
|                 | <u> </u>                     | 0 400 mS/cm                                                                                   |
|                 | Resistivity                  | 0.005 100.0 kOhm*cm                                                                           |
|                 | TDS                          | 0.0 1999 mg/l                                                                                 |
|                 | Salinity                     | · ·                                                                                           |
|                 | Temperature                  | 0.0 70.0 g/kg (PSU)<br>-5.0 +100.0 °C                                                         |
|                 | remperature                  | 23.0 212.0 °F                                                                                 |
| Accuracy.       | Conductivity                 |                                                                                               |
| Accuracy        | Conductivity                 | ±0.5% of m.v. ±0.3 % FS or ±2 μs/cm                                                           |
| 0               | Temperature                  | ±0.2% of .m.v. ±0.3 K                                                                         |
| Connections     | Conductivity/<br>Temperature | Permanently connected measuring cell                                                          |
|                 | Interface                    | Serial interface (3.5mm jack) can be connected to USB or RS232 interface of a PC              |
|                 | Analogue output              | via electrically isolated interface adapter USB3100, USB 3100 N, GRS3100 or                   |
|                 |                              | GRS3105 (see accessories). Alternative selectable analogue output 0-1V                        |
|                 |                              | (max. permitted connection length = 2m)                                                       |
| Measuring cell  |                              | Four-electrode-conductivity-measuring cell with integrated temperature sensor                 |
|                 | Electrode material           |                                                                                               |
|                 | Shaft material               | ероху                                                                                         |
|                 | Size                         | dia. 12 mm, length 120 mm                                                                     |
|                 | Ambient condition            | -5 +80°C (continuous) up to +100°C (short-duration)                                           |
| Display         |                              | 4 digit 7-segment (main and secondary display) with additional symbols                        |
| Additional func |                              | Min / max / hold                                                                              |
| Adjustment/Ca   | libration                    | Cell correction manually or automatically via selectable reference solution                   |
| Data logger     |                              | Real-time clock                                                                               |
|                 |                              | Cyclic: 10000 data sets, cycle time selectable: 1s 60 min                                     |
|                 |                              | Single: 1000 data sets (with measuring point input, 40 selectable measuring point             |
|                 |                              | texts or numbers)                                                                             |
| Alarm           |                              | 2 alarm channels with separate limit values for conductivity (or resistivity, TDS, SAL)       |
|                 |                              | and temperature                                                                               |
|                 |                              | Alerting: buzzer / visual / interface                                                         |
| Housing         |                              | Break-proof ABS housing                                                                       |
|                 | Protection class             | Front side IP65                                                                               |
|                 | Dimensions                   | 142 x 71 x 26 mm (L x W x H)                                                                  |
| Working condit  | ions                         | -25 to 50 °C; 0 to 95 %RH (non condensing)                                                    |
| Storage tempe   | rature                       | -25 to 70 °C                                                                                  |
| Power supply    |                              | 9V-battery (included in scope of supply) or external                                          |
|                 | Current consumption          | 2 mA (Out = Off)                                                                              |
|                 | Battery indicator            | Automatically if battery exhausted $\Delta$ and ' bAt '                                       |
| Auto-Off-Funct  | ion                          | Device will be automatically switched off if no key is pressed/no interface                   |
|                 |                              | communication takes place for the time of the power-off delay. The power-off delay            |
|                 |                              | can be set to values between 1and 120 min.; it can be completely deactivated.                 |
| Directives and  | standards                    | The instruments confirm to following European Directives:                                     |
|                 |                              | 2014/30/EU EMC Directive                                                                      |
|                 |                              | 2011/65/EU RoHS                                                                               |
|                 |                              | Applied harmonized standards:                                                                 |
|                 |                              | EN 61326-1 : 2013 emissions level: class B                                                    |
|                 |                              | emi immunity according to table A.1 and 3 1)                                                  |
|                 |                              | Additional fault: <1%                                                                         |
|                 |                              | EN IEC 63000 : 2018                                                                           |
|                 |                              | 1) = In the case of conducted interference radiation in the range of 5 - 50 MHz, interference |
|                 |                              | of the analog output can occur at the level of the maximum output voltage range.              |